模数转换器 (ADC)
最新课程
- 高压系统功能安全简介
- 揭秘高压应用安规中的电气间隙和爬电距离
- 管理微型逆变器中的电源转换挑战
- 比较三相工业系统的交流/直流电源转换拓扑
- 隔离认证概述及其对高压设计的意义
- 在基于 GaN 的电源中实现钛金级效率
- 提高 800V SiC 牵引逆变器效率和功率密度的主要设计注意事项
- 如何设计安全可靠和高效的储能系统
- 使用传统升压控制器创建初级侧调节反激式转换器
- 相移全桥转换器基础知识
热门课程
5.3 改善频率指标的方法:相干采样及滤波
欢迎参加 TI 高精密实验室
本章节将讨论相关采样和滤波
相关采样可以提升 ADC 测量到的最佳性能
这有助于评估一些高性能 ADC
而输入滤波可以提升输入信号的质量
以减小干扰
这是一个典型的 ADC 测试系统
红色方框内是前面提到的 FFT 的计算方法
这里使用 1M SPS 的采样率
和 256 个点的样本
这可以帮助计算频率分辨率
输入信号为 62.5k
输入信号是频率分辨率的16倍
由于是整数倍
所以没有频谱泄露
这就叫相关采样
所以最好测试 ADC 的方法
就是输入频率设置为分辨率的整数倍
以减小频谱泄露导致的误差
实际的系统是信号发射器
和 MCU的时钟不是同步的
所以要实现相关采样是困难的
例如设置信号发生器产生 62.5kHz 的信号
而实际产生的是 62.503kHz
并且还会随着时间和温度的漂移而漂移
同样 MCU 的时钟也会变化
例如1M SPS 可能实际是 0.9997M SPS
这种情况下会有频谱泄露
所以这种简单的系统实现不了相关采样
一种做法就是将 MCU 的时钟
和信号发生器的时钟同步起来
这样可以保证输入信号总是
是频率分辨率的整数倍
就算时钟漂移
可以将 MCU 的时钟送到信号发射器
也可以用信号发射器的时钟送到 MCU
时钟需要是高性能的
因为时钟抖动和偏移也会引入误差
通常这种方法适用于 18Bit 以上的 ADC 测量
测量 ADC 需要考虑的另一个问题是
输入信号的纯净度
许多信号发生器仅仅具有 12Bit 的精度
这样的精度满足不了高精度 SAR ADC
THD 和 SNR 的测量要求
有一些高精度的场合
信号发生器又比较贵
所以在普通信号发生器输出端
所以在普通信号发生器输出端
使用带通滤波器是比较好的选择
使用带通滤波器是比较好的选择
带通滤波器可以降低信号的谐波和带外的噪声
高阶的带通滤波器使得普通信号发射器
测量 18 或者 20Bit 的高性能ADC成为可能
现在来看一下评估版的 FFT 性能
SNR、THD、SINAD
和其他交流指标都显示出来
并且前面九次谐波也是可以放大的
样本数也是可以调整的
大的样本数可以减小频谱泄露
但是需要更长的测量时间
太长的时间信号发生器发生漂移
也会影响测量结果
通常 16k 或者 32k 样本比较好
当然跟实际情况有关系
加窗函数也是可以修改的
对于ADC
Seven-term Blackman Harris
是最好的选择
好的
本章节就到这里
你也可以通过测验题来提高你对这个章节的理解
- 未学习 1.1 数据转换器介绍 - 直流参数
- 未学习 1.2 数据转换器介绍 - 交流和直流参数
- 未学习 2.1 数据转换器介绍 - SAR型ADC输入类型
- 未学习 2.2.1 单端驱动电路分析
- 未学习 2.2.2 反向配置与轨对轨放大器的交越失真
- 未学习 2.3.1 交越失真实验所需硬件软件
- 未学习 2.3.2 交越失真实验软件设置
- 未学习 2.3.3 交越失真实验结果
- 未学习 2.4.1 仪表放大器输入范围计算
- 未学习 2.4.2 使用软件验证仪表放大器输入共模范围
- 未学习 2.5.1 全差分放大器及失真
- 未学习 2.5.2 全差分驱动电路设计
- 未学习 3.1 误差分析背后的统计学知识
- 未学习 3.2 理解与校准ADC系统的偏移和增益误差
- 未学习 3.3 使用蒙特卡罗SPICE工具进行误差统计分析
- 未学习 4.1 计算ADC系统的总噪声
- 未学习 4.2 动手实验-ADC噪声
- 未学习 4.3 ADC 系统中的噪声
- 未学习 4.4 ADC 噪声测量、方法和参数
- 未学习 4.5 低速 Δ-Σ ADC 的系统噪声性能
- 未学习 4.6 分析和计算 ADC 系统中的噪声带宽——多级滤波器
- 未学习 4.7 分析和计算 ADC 系统中的噪声带宽——数字滤波器
- 未学习 4.8 增益对噪声、ADC FSR 和动态范围的影响
- 未学习 4.9 计算放大器 + ADC 总噪声:设计示例
- 未学习 4.10 ADC 系统中的参考噪声简介
- 未学习 4.11 参考噪声对信号链性能的影响
- 未学习 4.12 降低参考噪声
- 未学习 5.1 频域介绍
- 未学习 5.2 快速傅立叶变换及加窗函数
- 未学习 5.3 改善频率指标的方法:相干采样及滤波
- 未学习 5.4 混叠及抗混叠滤波器
- 未学习 5.5 实验 - 混叠和抗混叠滤波器
- 未学习 6.1 SAR ADC及其器件选型
- 未学习 6.2 驱动放大器的选型和验证
- 未学习 6.3 建立SAR ADC的仿真模型
- 未学习 6.4 如何计算RC滤波器的值
- 未学习 6.5 最终的仿真验证
- 未学习 6.6 滤波器RC选型的理论计算方法
- 未学习 6.7 R-C组件选择背后的数学
- 未学习 7.1 电压基准概述
- 未学习 7.2 参考驱动器拓扑概述
- 未学习 7.3 了解SAR参考输入模型
- 未学习 7.4 开发SAR输入参考模型
- 未学习 7.5 驱动参考实验
- 未学习 7.6 ADC:SAR 基准输入 - CDAC
- 未学习 8.1 SAR ADC功率调节
- 未学习 8.2 动手实验 - 系统功率调节
- 未学习 9.1 EOS和ESD
- 未学习 9.3 向TINA 导入二极管PSpice模型
- 未学习 9.4 通过高压放大器保护低压ADC
- 未学习 9.5 保护低压ADC-改进的解决方案
- 未学习 9.6 用TVS二极管保护ADC
- 未学习 9.7 用TVS二极管保护ADC –改进的解决方案
- 未学习 10.1 了解和比较高速模数(ADC)和数模转换器(DAC)转换器架构
- 未学习 10.2 抖动对高速模数转换器(ADC)信噪比(SNR)的影响
- 未学习 10.3了解高速数据转换器中的信噪比(SNR)和噪声频谱密度(NSD)
- 未学习 10.4 带宽与频率 - 子采样概念
- 未学习 10.5 高速数据转换器中的采样率与数据速率,抽取(DDC)和插值(DUC)概念
- 未学习 10.6 频率和采样率规划:了解高速ADC中的采样,奈奎斯特区,谐波和杂散性能
- 未学习 10.7 高速数据转换器信号处理:真实和复杂的调制
- 未学习 (中文)11.1 ADC 系统中的噪声
- 未学习 (中文)11.3 ADC 噪声测量、方法和参数
- 未学习 (中文)11.4 低速 Δ-Σ ADC 的系统噪声性能
- 未学习 (中文)11.5 分析和计算 ADC 系统中的噪声带宽——多级滤波器
- 未学习 (中文)11.6 分析和计算 ADC 系统中的噪声带宽——数字滤波器
- 未学习 (中文)11.7 增益对噪声、ADC FSR 和动态范围的影响
- 未学习 (中文)11.8 计算放大器 + ADC 总噪声:设计示例
- 未学习 (中文)11.9 ADC 系统中的参考噪声简介
- 未学习 (中文)11.10 参考噪声对信号链性能的影响
- 未学习 (中文)11.11 降低参考噪声
- 未学习 动手实验:放大器稳定和电荷桶滤波器设计
- 未学习 无需放大器即可驱动 SAR ADC
- 未学习 外部EOS保护装置
- 未学习 (中文)5.5 实验 - 混叠和抗混叠滤波器
- 未学习 (中文)6.7 R-C组件选择背后的数学
- 未学习 (中文)7.1 电压基准概述
- 未学习 (中文)7.3 SAR 基准输入 - CDAC
- 未学习 (中文)7.4 了解SAR参考输入模型
- 未学习 (中文)7.5 开发SAR输入参考模型
- 未学习 (中文)7.6 驱动参考实验
- 未学习 (中文)8.1 SAR ADC功率调节
- 未学习 (中文)8.2 动手实验 - 系统功率调节
- 未学习 (中文)9.1 EOS和ESD
- 未学习 (中文)9.3 向TINA 导入二极管PSpice模型
- 未学习 (中文)9.4 通过高压放大器保护低压ADC
- 未学习 (中文)9.5 保护低压ADC-改进的解决方案
- 未学习 (中文)9.6 用TVS二极管保护ADC
- 未学习 (中文)9.7 用TVS二极管保护ADC –改进的解决方案
- 未学习 (中文)10.1 了解和比较高速模数(ADC)和数模转换器(DAC)转换器架构
- 未学习 (中文)10.2 抖动对高速模数转换器(ADC)信噪比(SNR)的影响
- 未学习 (中文)10.3 了解高速数据转换器中的信噪比(SNR)和噪声频谱密度(NSD)
- 未学习 (中文)10.4 带宽与频率 - 子采样概念
- 未学习 (中文)10.5 高速数据转换器中的采样率与数据速率,抽取(DDC)和插值(DUC)概念
- 未学习 (中文)10.6 频率和采样率规划:了解高速ADC中的采样,奈奎斯特区,谐波和杂散性能
- 未学习 (中文)10.7 高速数据转换器信号处理:真实和复杂的调制