Examining Wireless Power Transfer

John Rice
Agenda

• **Introduction**
 – Foundational principles of electromagnetics
 – Power transfer - near and far field

• **Existing and Emerging Wireless Power Standards**
 – WPC, PMA, A4WP comparison
 – Electromagnetic field safety implications of WPT

• **Theory of Operation**
 – Considering loosely coupled coils
 – Modeling resonant power transfer
 – Magnetic link efficiency
 – Topological analysis with SPICE and FEA

• **Design Considerations**
 – RX to TX communication
 – Intelligent voltage positioning and load response
 – EMI, efficiency/loss measurement
 – Foreign object detection – eddy loss detection
 – Single coil, 5 W WPC design example
Notable Dates in Wireless Power Transfer

- **1820**: Biot–Savart / André-Marie Ampère / H. Oersted discover and quantify relationship between electric current and magnetic fields

- **1831**: Michael Faraday / H. Hertz discover electromagnetic induction

- **1834**: Lenz (Lenz's law) → N. Callan invents the electrical transformer

- **1864**: James Clerk Maxwell synthesizes previous observations and mathematically models electromagnetic radiation

- **1891-1917**: Nicola Tesla – enormous contribution to the practical application of resonant power transfer and electromagnetic induction; numerous discoveries and patents

- **2007**: WiTricity research group, led by Professor Marin Soljacic advances magnetic resonance to wirelessly power a 60 W light bulb with 40% efficiency at 2 m using 60 cm-diameter coils

- **2008/9**: A consortium of companies called the Wireless Power Consortium (WPC) announces the evolution of a industry standard for low-power (5 W) inductive charging
Electromagnetic Wave Propagation

- Field defined by antenna and distance from source
- Dipole(red) and loop(blue) antennas shown
- Wave impedance = E/H, converges at $\lambda >> 1$
- Reactive near field below $\lambda/2\pi$ is non-radiative
Race for a Wireless Charging Standard
Safety, Performance, Reliability and Interoperability

Wireless Power Consortium (WPC)
- Power Frequency Band: 105-205 kHz
- Communication Frequency Band: Same as power transfer band
- Range of Coupling: 0.4 to 0.7

Powermat (PMA)
- Power Frequency Band: 277-357 kHz
- Communication Frequency Band: Same as power transfer band
- Range of Coupling: 0.6 to 0.8

Alliance for Wireless Power (A4WP)
- Power Frequency Band: 6.78 MHz
- Communication Frequency Band: 2.4GHz ISM (ZigBee or BLE)
- Range of Coupling: 0.1 to 0.5
Safety Considerations
Electromagnetic Radiation Effect

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>E-field (V/m)</th>
<th>H-field (A/m)</th>
<th>B-field (µT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025-0.8 kHz</td>
<td>250/f</td>
<td>4/f</td>
<td>5000/f</td>
</tr>
<tr>
<td>0.15-1 MHz</td>
<td>87</td>
<td>0.73/f</td>
<td>0.92/f</td>
</tr>
<tr>
<td>1-10 MHz</td>
<td>87/f^0.5</td>
<td>0.73/f</td>
<td>0.92/f</td>
</tr>
</tbody>
</table>
Theory of Operation

\[\oint E \cdot dA = \frac{\Sigma Q}{\varepsilon_0} \]

\[\oint B \cdot dA = 0 \]

\[\oint E \cdot dl = -\frac{d}{dt} \oint B \cdot dA \]

\[\oint B \cdot dl = \mu_0 I_{enc} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} \]

\[\mu_0 = \text{Vacuum permeability} \]

\[\varepsilon_0 = \text{Vacuum permittivity} \]
Loosely Coupled Coils
Self and Mutual Inductance

Physical representation of flux coupling

Electrical representation of flux coupling

\[V_1(t) = R_1 i_1(t) + L_1 \frac{di_1(t)}{dt} + M \frac{di_2(t)}{dt} \]

\[V_2(t) = R_2 i_2(t) + L_2 \frac{di_2(t)}{dt} + M \frac{di_1(t)}{dt} \]

\[P = \frac{\phi}{N_i} = \mu A, \phi = PNi \]

\[V_c = N \frac{d\phi}{dt} = N \frac{d(PNi)}{dt} = N^2 \frac{\mu A}{l} \frac{di}{dt} = L \frac{di}{dt} \]

\[L = \frac{N\phi}{i}, \phi_1 = \phi_{11} + \phi_{21} \]

\[V_2 = N_2 N_1 P_{21} \frac{di_1}{dt} \rightarrow M = N_2 N_1 P_{21} \]

\[\phi = \rho N_i \]

\[V_c = N \frac{d\phi}{dt} = N \frac{d(PNi)}{dt} = N^2 \frac{\mu A}{l} \frac{di}{dt} = L \frac{di}{dt} \]

\[L = \frac{N\phi}{i}, \phi_1 = \phi_{11} + \phi_{21} \]
Power Transfer, Wired and Wireless

Wired/
Tightly
Coupled

\[P_{out} = \frac{V^2}{RL} \]

Non-Ideal Transformer \(k \ll 1 \)

Load Reflected to Primary is Proportional to \(k^2 \)

Load Reflected to Primary

\[RL' = N^2 \cdot RL = RL \cdot k^2 \cdot \frac{L_P}{L_S} \]

Ideal Transformer \(k = 1 \)

\[\frac{V_P}{V_S} = \frac{I_S}{I_P} = \frac{N_P}{N_S} \]

\[P_{out} = \frac{V_P^2}{RL} \cdot \left[\frac{N_S}{N_P} \right]^2 \]

Cantilever Transformer Model

\[L_{lk} = (1 - k^2) \cdot L_P \]

\[L_m = k^2 \cdot L_P \]

\[N = k \cdot \sqrt{\frac{L_P}{L_S}} \]

Leakage Impedance Cancelation

Texas Instruments – 2014/15 Power Supply Design Seminar
Considering Resonance

Series Resonant Tank

\[X_L = \omega L \quad \text{R} \omega \]

\[X_C = \frac{1}{\omega C} \]

\[I = \frac{V}{Z_{eqs}} \]

Parallel Resonant Tank

\[X_L = \omega L \quad \text{R} \omega \]

\[I = \frac{V}{Z_{eqp}} \]

\[X_C = \frac{1}{\omega C} \]

\[I = \frac{V}{Z_{eqp}} \]

\[Z_{eqp} = \sqrt{R^2 + \left(\frac{V}{I}\right)^2} \]

\[Q = \frac{f_r}{\Delta f_{3dB}} \]

\[f_r = \frac{1}{2\pi \sqrt{LC}} \]

\[\Delta f_{3dB} = \frac{f_r}{Q} \]
Coil Skin and Proximity Losses (Eddy Induced Losses)

\[R_{p_{\text{ac}}} = \frac{\omega L_p}{Q_p} \]

\[R_{s_{\text{ac}}} = \frac{\omega L_s}{Q_s} \]

\[R' = k^2 \cdot \frac{L_p}{L_s} (R_s + RL) \]
Typical WPC TX/RX Coil Q and Skin/Proximity Effect

TX:
- 43 mm diameter with shield
- Litz wire, 105 strand
- 20 turns, 2 layers
- $Q = 100 \@ 130 \text{ kHz}$
- $R_{ac} = 176 \text{ m}\Omega$

RX:
- 40 x 30 mm with shield
- Litz wire, 2 strands
- 14 turns, 1 layer
- $Q = 2.3 \@ 130 \text{ kHz}$
- $R_{ac} = 515 \text{ m}\Omega \@ 130 \text{ kHz}$
Primary Current vs. Frequency and Coupling Coefficient

\[Z_{IN}(f,k) = R_P + R(k) \cdot \frac{Q_p(f,k)^2}{1 + Q_p(f,k)^2} + j(X_{LS}(f,k) - X_{C_r}(f)) + R(k) \cdot \frac{Q_p(f,k)}{1 + Q_p(f,k)^2} \]

\[ir(f,k) = \frac{V_{fundamental}}{Z_{IN}(f,k)} \]
Coupling Efficiency

Coupling Efficiency in Relationship to Coil Separation (z) and the Ratio of Coil Diameters

Magnetic Efficiency vs. Coil Vertical Displacement z/(D), Normalized

- Drx = Dtx
- Drx = 0.3 Dtx
- Drx = 0.1 Dtx
- Drx = 0.03 Dtx
- Drx = 0.01 Dtx

Q=100
Magnetic Figure of Merit
\(F(k,Q) \)

30 mm Planar Coils

- \(Q = \text{geometric mean of coil quality factors} = \sqrt{Q_p \times Q_s} \)
- \(Q \) influenced strongly by skin and proximity effect
- High \(Q \) compensates for poor coupling
- High \(Q \) requires greater control bandwidth

\[
\lambda(k,Q) = \frac{2}{(k \times Q)^2} \times \left[1 + \sqrt{1 + (k \times Q)^2} \right]
\]
Coupling Coefficient and Mutual Inductance from Transfer Gain

\[k = \sqrt{L_{rx} \cdot \frac{V_{tx}}{L_{tx}}} \cdot \frac{V_{rx}}{V_{tx}} \quad \text{Gain} \quad L_{rx} = 10.8 \ \mu H \]

\[M = k \cdot \sqrt{L_{rx} \cdot L_{tx}} \]

\[k \text{(gap = 0 mm)} = \frac{0.516}{\sqrt{L_{rx}}} = 0.83, \quad M = 13.6 \ \mu \]

\[k \text{(gap = 8 mm)} = \frac{0.208}{\sqrt{L_{rx}}} = 0.321, \quad M = 5.27 \ \mu \]
Intelligent WPT
Digital Power, Resonant Battery Charger

- A transmitter (TX) driving a resonant coupled inductor
- A receiver (RX) with rectification, load modulation and post regulation
- A load, commonly a single cell, secondary battery pack
Resonant Circuit Analysis

- VG1 is a variable frequency AC signal in frequency domain
- VG1 is a 50% duty cycle, 19 V square wave in the time domain
- Power regulated by changing the frequency or voltage

\[
20 \times \log\left(\frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) = 20 \times \log\left(\frac{7.65}{19}\right) \text{dB} = -7.902 \text{ dB}
\]

- **VG1**: variable frequency AC signal
- **VG1**: 50% duty cycle, 19 V square wave
- **Power** regulated by changing the frequency or voltage

Diagram:
- Resonant circuit components
- Frequency vs. Gain plot
- Waveforms for different conditions

Table:
- Frequency (Hz)
 - 70.00 k
 - 167.33 k
 - 400.00 k
- Gain (dB)
 - -24.23
 - -2.48
 - 19.26

Waveforms:
- VOUT
- VAC
- VG1
- Vcoil_TX
Examining Circuit Behavior in SPICE

Texas Instruments – 2014/15 Power Supply Design Seminar
2-D FEA Plot of Magnetic Flux Between TX/RX Coils

- Receiver side shielding is important
- Poorly designed shields expose battery and external circuits to magnetic field
- AC/DC winding losses of TX/RX coils correspond with empirical results = 0.32 W

![2-D FEA Plot of Magnetic Flux Between TX/RX Coils](image)
Quantifying Losses – Typical 5 W Wireless Power Transmitter/Receiver

\[\eta = \frac{P_{\text{OUT}}}{P_{\text{OUT}} + P_{\text{RX}} + P_{\text{TX}}} \]

\[P_{\text{TX}} = P_{\text{TXcoil}} + P_{\text{Bridge}} + P_{\text{control}} + P_{\text{DC–DC}} \]

\[P_{\text{RX}} = P_{\text{RXcoil}} + P_{\text{rectifier}} + P_{\text{Ido}} + P_{\text{comm}} \]
Design Considerations, WPC

- Feedback communication
- Loop response
- Foreign object detection
- Electromagnetic compatibility
- System efficiency
WPC 1.1 Compliant
5 W TX Reference Design
Qi Power Transfer Communication Protocol

- **TX generates a shared magnetic field**
 - TX coil creates magnetic field
 - Magnetic field induces current in RX coil

- **Communication in power field**
 - TX waits until its field perturbed by RX
 - TX sends seek energy “ping”
 - TX waits for a digital response
 - If digital response is valid, transfer power

- **Power transferred at level needed**
 - RX reports power received/needed
 - TX adjusts power based on RX feedback
 - If feedback is lost, power transfer stops

From WPC Qi System Description. Part 1
WPC RX Load Modulation

Integrated Transmitter IC

Integrated Receiver IC

Texas Instruments – 2014/15 Power Supply Design Seminar
Measurement

• Power transfer waveforms
 – Coil resonance
 – Harmonic content

• Load response

• Efficiency –
 – Loss contributors
 – PCB coil vs. Litz

• RX/TX communication

• EMI, FOD

• Spatial freedom

VNA – Bode 100 – Coil gain/impedance characteristics

MDO4104 – Mixed domain oscilloscope

Differential voltage probe capable of > 40 V, current probe, IR probe
Reference Design Waveforms at 5 W
Time and Spectrum Domain

Centered coils force operation further from resonance
V_{pp_tx} = 20 V, f_{SW} = 170 kHz
RMS gain = 0.56

Misaligned coils force operation closer to resonance
V_{pp_tx} = 40 V, f_{SW} = 135 kHz
RMS gain = 0.509
Intelligent Voltage Positioning

Dynamic Voltage Positioning

Load current step = 250 mA-0 A

Maximum data rate package during transition

240 ms
Transient Load Response

\(I_{\text{OUT}} = 0 \text{ to } 1 \text{ A} \)

- 5 V TX Supply Current
- 12 V TX Supply Current

Voltage Response

WPC Wireless Power RX Phone “Skin”
Transient Load Step Response
Litz TX Coil / PCB RX Coil

0 to 250 mA load step at ~ 1 A/µs

45 mm TX coil with shield
bq51013B based RX design
2.65 in x 1.35 in x 0.02 in
System Efficiency – DC Input to DC Output
PCB Coil vs. 105 Strand Litz Coil
Designing for Spatial Freedom
Efficiency Across Charging Area

- Efficiency map at a 5 W load measured over the PCB coil area
- +/- 40 mm in x-direction and 30 mm in y-direction, 5 mm steps
Design for Electromagnetic Compatibility

- GND Plane Under TX Coil
- TX Conductive Enclosure
- Wireless Transmitter
- Wireless Receiver
- Common Mode Filter
- Multilayer Electric Shield

Non-Optimized Performance

Optimized for EMC

Texas Instruments – 2014/15 Power Supply Design Seminar
Foreign Object Detection

- Metal objects between TX and RX can induce eddy current losses
- Field density of 5 W wireless chargers can result in significant eddy losses
- Depending on specific heat capacity, foreign object temp rise can be > 60°C
- Battery pack is especially sensitive

\[\Delta T = \frac{P \times t}{C \times m} \]

Where:
- \(P \) = Power dissipated in FO
- \(C \) = FO specific heat capacity
- \(M \) = FO mass
- \(t \) = time
Dynamic RX / TX Loss Accounting

Transmit & Receive Power (mW)

Loss vs. Threshold (mW)

45 mm FO placed adjacent to misaligned TX coil

FO placed next to TX coil, losses increase by > 1 W

Loss threshold set high

FOD reaches 55°C in under 60 s

FO removed
A Vision for Wireless Power Transfer

Wired Model

Limited Resource

AC

85% Efficient

Customized/Product Specific
AC to 5 VDC USB Adapter

Customized Charging Cable

Phone/Portable
Electronic Device

Charger IC

Wireless Power Vision

85% Efficient + Plus Low Power Shutdown Modes

Multi-Mode Universal
WPT Transmitter
Charges All Compliant Devices

Intelligent Wireless Power Transfer

Phone/Portable
Electronic Device

Charger IC

WTP Receiver

~80% Full Load

PDA

Charger IC

WTP Receiver

Texas Instruments – 2014/15 Power Supply Design Seminar
Summary

• Market studies project rapid growth in wireless power technology

• Wireless power transfer is useful when a wired solution is inconvenient, hazardous or impossible

• WPT standards have emerged to accelerate growth, reliability, acceptance and safety in consumer electronics

• Developing a wireless power solution does not require compliance to any standard other than those affecting consumer safety and EMC

• Standard compliance may provide advantages in marketability (interoperability), performance, reliability and time to market

• Achieving spatial freedom and good efficiency requires a deep understanding of magnetic field theory
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information from third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to additional restrictions.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Copyright © 2015, Texas Instruments Incorporated