PAE: Stellarisware BAENTINH

Introducing StellariswWare
KEFLF, MOWlE s StellarisWare A 1444
KT Fr 1.

A RBA TR R A= NS StellarisWare B4F, T GF L T AR SE N AR . StellarisWare s — g 22 53K
117 Stellaris MCU Bt &1 0 #c4 . & R34 Stellaris N B 88, &Y Stellaris MCU Bt &1
R =7k, StellarisWare %Ay 4y 4 5 25T e e e

- SN EEIR BN A
-EE

- USB F/7 /%

- IEC 60730 SC %
- IQMath

A E ¥ AE MCU ROM LI StellarisWare,] LU ifi 2 2 i i) 5 I pR AL, D 8 (0 B vk R 4 A1k AR (o it
RIT %

LI 2:

StellarisWare = %47 =R (1 Hl 57

1) JHAERIE: MCU 258 1A Ji5 B A] 57 H 22 A]

2) FIHIEAT I AL i B SR VR4 T /% Stellaris MCU, i Sl 7= i IF R

3) MR FATHRBE S RS THEOR, Ptk % iy

AR S 7 A StellarisWare P IFAT I A IRESE e T AT B RS) — BU& i !
LIk 3

#3RAS Stellarisware, %5 1] LLZE ti.com/stellarisware W 7L 4% R4, ool 20FMA7) CD B wd:., %1t
MR T EL A, Stellaris [pA 2= X I5f 56 843 StellarisWare T F2, [2 4k H B i il i, A L4t
NP — 28, SRR AR P ARG L2 .

LI R 4:

StellarisWare Mg sl A o2 BEEPAF RO, ST A b Z00 T AU AR A SCAT, 35 B SR T A R JEE
StellariswWare f{) i J] 2843 21 T1 VFRIE RIS AT 0] USRI FRATTROAURS, B34 B i 5 20 k4T
Bk, SR, 2B =J7 TRIVFRI AT, XSS A o) AR LS Hy .

%I4T 5:

KR AR AR . e AR ST I 2 1, SR AR T . StellarisWare (¥4 it LA &) 24 iy 44 72
(Hungarian-Notation) 4 #x# .

XA 2 N Main (850 1 UART interrupt handler b 0 pg %, Ao o (49 B FH 380 1) 6 B0 1 9 235
B E T DriverLib 53X zh A AT HE 45 26 %L

FEE R,

T 56T B % SysCtlClockSet % B 2 45 Inf 4l

SR JEAEBE UART H1 GPIOA.

FH BR % IntMasterEnable {5 B b 7 25 H i T g

WE GPIOA, 50 F 1 /E8 UART 5 .

H %0 UART ConfigSet X UART JHTHECE., LAME Lt 8 NS, BRI A1 1AM 147 fFIE R

115,200 P4

o fHEE UART 3 [0 0, AEBETE Wiz 382 i)™ A b 7, JfF BLAEMC S 545 B AR B I (receive timeout)
I~ 4 UARTO FRIKT .

o Hli, GE¥EEIT UART SCHl RIS, B HE A TE IRAEFRORAS

2 UART U BIEUE R, RASHAT UART A FERE Y . %R 0 o0 U 06 3] UART . 5 b Ab # R
FEE R h IR A, ARJEVER AR . While loop BfRZ 4R, FELR4L 3] UART.

A PN EN P LUR JESCR AT LUAE S e AR A R T 1, BTN PR 22 17 A UART MBIl b W o) 2 R IR 3 A 4 A
e

Rt WEEH _MAP, 5 H#include £5 484 In# StellarisWare inc SCAES A1 rom_map.h S0, i
ROM A5 0] i f#) % (macros), X622 I ROM HEAT BB« 75 WK IR A7 A THR 4 .

I 6:

USB % 2 StellarisWare /1 LU 22— NP . B0y USB F: 4548 (Host), USB 2 1 (device) 1 #3)) USB
OTG NMHFEFHEMESCRF . StellarisWare $&f—E& 53 1) %5 P EAERK N i) USB MRS R, Hh A 1R 2 7448
AJ LLJGURE B (as-is) AR BCAE 23 N AR, it USB #2101 Firmware T HE AR T4, USB - #H] 2 H04% 11
DA K CDC 2§ bt 7 fi#i(mass storage) B3 . A& SaX Leom], wlfEH Stellarisware ¥ . TI MCU
B BB AL USB U R, T1IEXT USB LR F ™ i 1D AT T FVFRT . XA A &= i B CUR e H 1
2R UEAEFE A 0. USB FE ST ANEACAS I 41 B 2R LT StellarisWare 91 LA SCAF 1

LT H 7

K (Graphic Library) mfATEBIIFREEN . E1E 2 MO FEZIREZ 1 (layers) L33 FE.
1. VIEHEIE (primitives layer)
2. 4 (widget layer)

HETEERG AR —NEEN AR . H RSN ISR, ERF2 AN EoRdas i rnEflas. ETEE
FE A AP AR A = 2 ShEJZ T (layers of function), R, %8] DLk FRAE il & 8 75 B 1 2 1 - T4 R

%I H 8:

ALt 1IEC 60730 AIE MCU, 1XFh MCU 5@ FH TUERHUMETHL. VKR A AR LS5 s .
StellarisWare extensions & 1EC 60730 2 224> B sk 1L 3 45,

KT Fr 9:
FATE PEAND 7= 451 -
T TR A B s B 510 ADC, UART 4%
W TR E IDE AR =4, anax B Br Ak B s
4T F 10:

SimpleLink & —A AL S AL R TT %o Tl I I KRR FE > To 20 18 T 75 (1 RF Tl Al s, KR E&EAR T
FERHMIAIE. T1 SimpleLink /i RIIAWH K, W2 R ELHE AR (F WIi-Fi®, ZigBee®. #i Bluetooth) fZfit
fif U T % o

£ A 11:
Boot Loader(Ji2 #iN#F25) 15 Serial Flash Loader(& 47 A A I FEFE) AN [o

Al T-P03% ¥ 38 1) BootLoader 23 Z AN 3 H . X Tl ROM (1284, BootLoader C\¥i#k7F ROM 1.
A =¥ Boot Loaders KA AA7E N A7+, 853 P o n] 4T K+ BootLoader 85 A NAEH o

FEMLEBAT ROM (¥t L, Flash loader 7E i) Hr ke S SN A+, JFARRIARF ER AN AA . THH,
FEEA R A Flash loader SR8/t — IR MERMFREFRES . B/ A ITAG.

LT 13:
- LM Flash Programmer & —#fi [N {74 f2 utility
- TRFHAT. JTAG. UK. USB %% Ff 11 1) bootloader
- 15 FTDI ICDI F1JE T Stellaris f) 1ICDI e
- £E GUI AT AT 3y m] 11
- SRVFAEAE P R T 4 S A (SCRIPT)

U SRR HT 2 56T FTDI 5% Stellaris 1) FTDI R T7 %, A4S StellarisMCU HIINAFRES T, 120
Application Note = “how to program flash” ({2 5 N AEFEFE)

ZI0T A 14

A2t T34 4 LM Flash Programmer (LMFP)f] GUI [N AE5EE 2%, X J&— i &) Windows N L, Al il
REPEALAITE A AR L) ICDI RS MCU [INAERE . ST DA R PR RS« T BRA B AR A7 R S R
WA HA utilities 7T H T — kMK EE R EREE, T8 iR S R0k 2 4748 AR IS B

IXH, ST LT R G AR A BEAE] LMFP. 2%k Stellaris PEASHIY A N E ICDI. 7655 —Nnpld, 4
AT LA T il)] B 448 LMFP % Stellaris BEA5#_F ¥ StellarisMCU @474 F o

FE RIS AR rh, G nT LS I VFAS AR 1 415 18 (debug-out) ThEEKS 5 4N H AR Y. X, &0 LA 2
EK-LM3S811 /11 T-55 20 514 10 51 ITAG @ Rcas 10344, LMEAEILH —A reference design (275 i)k
ESE MCU #2/7. FERIE AR R b, IR e i T4 S 20 N AR o

ZHT F 15:

ARM & RG AL L H ARM P2 I A TS TIHRET ARM 077 a2 . RATRIR 2 A 518 T A1tk a6
Fo AATILE T H JRHb T30 BN B ASLAE 0 TR, Wb gmfiss, MRS T . i ixesa iy
i TI ARM 284

T A 16:
- XU R AT AR 2 1 12 IDE.
- BAIFRE S FIRBEAS IDE BLEM AT AT
- AW Fh IDE i ?
- REMAEOE . AFE)IDE, MATEDIRE . BASFALIATT T #8A S A .
- W RASAE IDRE SEHE LA IR, & SRS T AE ML T1 sl AR () FAE.
KT F 17:

X LR T Stellaris MCU) 52 #:4E R 45(RTOS) . B4 RTOS ML BEM A % A . OPEN-RTOS.
SAFE-RTOS 1 FREE-RTOS & A JLFHiE H T Stellaris MCU [H RTOS.

FreeRTOS J& £ Xk N X & P SE I #AE R G0, nIRBAE I 2 AN gl 4s L. FreeRTOS R4l GPL (General Public
License) A BEAT 0 HE, (HABAFAE —FPREp o IXFRRR1AE 15 P 105 FEARHS A8 4 3 I AZ AR 5 Ak FF5 1D ()) 4 e
MIVE, M8 FreeRTOS 784 FH N FH R 3 A (4

FreeRTOS it/ H) T4, W% (kernel YA S H =AYAS C U . Z28UIHHL TR C 5 5 ik,
FEARIS AT B Sy TREAEANGED, (H A 87 Gt pR B80T 2N 2 L5 — S8V 08 55 iR A (2 8000 28Ry S 1R T
FEJ7FEFE (scheduler routines)+) . Ki: http://en.wikipedia.org/wiki/FreeRTOS

£k 18:
LMAF PR B R FRAT] MAF MCU ot AR S haem ek, e A2 RmIhae, #lan:

OLED W7rpbt, RHRINAE, ALIES%: hidFEALI&es (Accelerometer). i JEfLI& %) , USB OTG/¥#/THL. SD
KA

Br T IXLEE)RE, SR — AN Windows [id % #% (datalogger), nI H kK MCU w8 i s 21 esv S
W BRI CAHE B P AE 10 4Bl 5 I R] Py PR N T)

LT A 19:

WARIEFHEEZAFE, TS BATREN AT T, thn] LLBEIN F341] E2E @12 EHEhiR . S m
MG . W

Introducing StellarisWare

Slide 1:

This PTM will introduce you to StellarisWare and provide you with a better understanding of its applications.
StellarisWare is software that has been made to be used with Stellaris MCUs. It includes software that the
Stellaris team has created, or third party software that has been ported to use with Stellaris MCUs. There are
5 functional areas:

Stellaris Peripheral Driver Library
Stellaris Graphics Library
Stellaris USB Library

Stellaris IEC 60730 Library
IQMath

StellarisWare has been programmed into ROM on Stellaris MCUSs to provide easier access to common
function calls and to be as robust of a solution as possible.

Slide 2:
StellarisWare can be used in 3 key ways:
1) Straight out of the box; it is ready to be used for development when you receive your MCU

2) To learn more about the Stellaris MCUs, so you can begin developing your product, we have provided
plenty of documentation to ease use.

3) It can help you be fast to market, because we provide it to you royalty free.

We develop StellarisWare along with silicon. This parallel development shows our commitment in helping you
succeed!

Slide 3:

You can dowload StellarisWare for free at ti.com/stellarisware, or install from a CD included with your device.
We will provide frequent updates, when necessary. Tool vendors frequently update tool features, in order to

keep up with this the Stellaris team will rebuild the projects and push out the updates to the customers, this is
done with an intention to provide a fantastic user experience.

Slide 4:

DriverLibrary is a key core component of StellarisWare, which provides source code and library files for use in
your development and to speed up your development time using StellarisWare. Use of StellarisWare is
governed by Tl license. You can use the code as is, or modify it to meet you needs. However our third part
tools have different licensing conditions, we can help provide support for these types of questions.

Slide 5:

Here is a really simple example to demonstrate the power of StellarisWare

Note that the code is readable, the function names are self descriptive, and we follow a coding standard, which
is Hungarian notation.

As you can see, this slide shows some example code using the DriverLib peripheral drivers. This particular
example utilizes the UART to echo text. All characters received on the UART are transmitted back to the
UART. A PC terminal application such as HyperTerminal or TeraTerm could be used to interact with the
evaluation board. The complete UART echo example is provided with DriverLib.

You can see 2 functions here: main and the UART interrupt handler. All of the function calls in this example
are calls to functions provided within DriverLib.

In main, first the system clock is configured by making a call to System Control Clock Set (SysCtIClockSet).
Then both the UART and GPIO A modules are enabled. Interrupts to the processor are enable by calling
Interrupt Master Enable (IntMasterEnable). GPIO A pins 0 and 1 are configured to function as UART pins.
Then a function call is made to configure the UART for a 115,200 baud rate using 8bits of data, no parity, and

1 stop bit. Two function calls are made to enable the UARTO interrupt at the interrupt controller level, and to
enable UARTO to generate an interrupt when a character is received or when a receive timeout occurs. Finally,
an infinite loop is entered while data is echoed through the UART.

The UART interrupt handler is executed when data is received by the UART and is responsible for echoing that
data back out the UART. First the interrupt handler gets the interrupt status and then clears the asserted
interrupts. The while loop gets characters received and transmits them back out the UART.

Using DriverLib along with its documentation makes writing such an example easy as there is no need to
understand the low-level register details of the UART module or the interrupt controller.

Note: To use _MAP, please include rom_map.h from the inc folder in StellarisWare. Macros to facilitate calling
functions in the ROM when they are available and in flash otherwise.

Please refer to MAP example in StellarisWare at C:\StellarisWare\examples\peripherals\rom
Slide 6:

One of the more complex library provided in the StellarisWare is the USB library. This library provides support
for USB host, USB device and USB on-the-go applications. There is a full set of examples for USB in various
modes of operations provided in the StellarisWare. Many of these examples can be integrated in the end
applications ‘as-is’ such a USB device firmware upgrade, mass storage for host & device and CDC classes. If
you modify these examples, the source | is provided in the StellarisWare and it can be used as a starting point
for more complex applications. This library is provided royalty free with TI MCUs. Tl also sub-licenses vendor &
product IDs for the USB. This can be useful for customers with small number of products or for developmental
purposes. The files and source in USB library are organized similarly as other libraries in StellarisWare.

Slide 7:
- Graphic Library helps developing graphics apps. It provides functionality in form of 2 layers
- 1. primitives

- 2. widgets

However it is not a graphics app. But it can be used for multiple displays & display controller if you have the
driver for them. Graphics Library also has low level & high level platforms, so you can work at the level that
best meets your needs.

Slide 8:

We provide MCUSs that are IEC 60730 certified, this will work best in household appliances such as
washers/dryers, refrigerators, freezers, and cookers/stoves. The StellarisWare extension provides support for
IEC 60730 Class B Safety requirements.

Slide 9:
We have two types of examples:

- Peripheral specific: like ADC UARTS etc

- Kit specific, which isshown in the screen shot
Slide 10:

SimpleLink self-contained solutions were designed to simplify wireless development and certification by
minimizing the amount of RF expertise you need to wirelessly enable a wide range of applications. Tl offers
SimpleLink solutions for multiple wireless technologies including Wi-Fi®, ZigBee®, 6LOWPAN, and ANT™,
with an expanding portfolio to come.

Slide 11:
A Boot Loader is not the same as a Serial Flash Loader.

The BootLoader is used as a field update, supports multiple field updates and is also available in ROM, for
those devices that have ROM. The Boot Loaders is meant to reside long term in flash or the user can program
BootLoader in flash.

The Flash loader is programmed from the factory in flash for devices that do not have ROM and it is not
meant to reside in flash. Typically it is used to program parts during production in a way that provides one time
programming ability without JTAG.

Slide 12:

The Stellaris LM3S9B96 MCU has an additional feature integrated in the ROM. The high-integrated RTOS,
SAFERTOS from Wittenstetien is included in the ROM. This can be used as an standard operating system, or
as a part of high integrity application that requires certifications like IEC61508 of FDA510. This is a 65k value
free within the LM3S9B96 i.e. price for SAFERTOS is included in the price of the LM3S9B96. You won't need
to buy an additional license for SAFERTOS if you purchase LM3S9B96. This can significantly reduce the time
to market and development for industrial and medical applications. Innovative Design Assurance Pack
available separately from WITTENSTEIN provides complete turnkey evidence and process documentation.
Currently, SAFERTOS comes in ROM of just one device. Will plan to include in RTOS in the ROM of more
devices in the future.

Slide 13:

- LM Flash Programmer is a:

- Flash prog. utility

- Supports BL over multiple interfaces: serial, jtag, ethernet, USB
- Is compatible with FTDI ICDI & Stellaris based ICDI

- Available in both GUI & command line mode

- Allows writing script in the production flow

In order to program the flash of StellarisMCU if you are using a FTDI/Stellaris based FTDI solution, please see
application note of “how to program flash”.

Slide 14:

The Stellaris team provides a Windows GUI flash programmer called LM Flash Programmer. This is a simple
windows application which is used to program the flash of the MCU using the in-circuit debug interface (ICDI)
built on the evaluation and development boards. You can use this application to program, erase and upload the
contents of the flash memory. There are other utilities available for mass erasing the device and updating the
contents of non-volatile registers in the device. LMFP supports JTAG and SWD.

Here you can see how to use LMFP from the hardware perspective. Most of the Stellaris evaluation boards
have a ICDI built into them. In the first example, you can see how you can directly LMFP program the Stellaris
MCU present on a Stellaris evaluation board using LMFP.

In the second example, you can use the debug-out feature of the evaluation board to program the external
target. Here you can see that an EK-LM3S811 kit is used to connected to a 20 pin to 10 pin JTAG adapter to
program the MCU on one of our reference design board. This can be particularly useful in programming end-
application during manufacturing and testing processes.

Slide 15:

The benefit of ARM ecosystem is that companies that support ARM products are compatible with TI ARM
products. We have partnered with a number of companies who are into the business of enabling customers by
providing tools that silicon vendors do not traditionally provide, for example: production programmers. All of
these companies work with TI ARM devices.

Slide 16:

- These are the major tool that we partner with.

- We have kit with each one

- Which tool is the best?

- It depends. Different tools have different features, different costs and different benefits.

- If you need recommendation/advice is selecting a tool that best meets your needs, please let a local Tl/disty
FAE know.

- ICDI works with all tool chains

- Some tools are based on eclipse.

Ex: Code red (it supports SWD, trace support)
CCS benefits
- supports all Tl products (like DSP, MCUs etc.)
- can use full version on our kit
- if you want full version for development on your board, then you have to buy a license
CS: inexpensive, if you like eclipse you can use it.
Slide 17:

There are several RTOSes available for Stellaris MCUs that users may find useful. Each RTOS offers different
number & types of feature and cost. OPEN-RTOS, SAFE-RTOS and FREE-RTOS are some of the popular
RTOSes for Stellaris MCUS.

FreeRTOS is a real-time operating system for embedded devices, being ported to several microcontrollers. It is
distributed under the GPL with an optional exception. The exception permits users' proprietary code to remain
closed source while maintaining the kernel itself as open source, thereby facilitating the use of FreeRTOS in
proprietary applications.

FreeRTOS is designed to be small and simple. The kernel itself consists of only three or four C files. To make
the code readable, easy to port, and maintainable, it is written mostly in C, but there are a few assembly
functions included where needed (mostly in architecture specific scheduler routines). Source:
http://en.wikipedia.org/wiki/FreeRTOS

Slide 18:

The LM4F Evaluation Kit is our latest kit with floating point capabilities with M4F MCUs. It has many great
features, such as:

OLED display

Hibernate feature

Sensors (Acc, temp)
- USB OTG/device/host, SD card etc.

Along with these features it also has a datalogger quick start application for Windows that lets you log the data
from the MCU to a csv file. Which helps a user can get started in 10 minutes or less

Slide 19:

Thank you for listening to this PTM if you need any information we have provided resources here, and you can
always ask questions on our E2E forums.

