GaN FET-Based High CCM Totem-Pole Bridgeless PFC

Zhong Ye
Alvaro Aguilar
Yitzhak Bolurian
Brian Daugherty
Agenda

• AC/DC efficiency standard and PFC efficiency requirement
• Bridgeless PFC topologies and development trend
• GaN (Gallium Nitride) FET overview
• Totem-pole CCM bridgeless PFC control
 – UCD3138 control implementation
 – Ideal diode emulation
 – AC crossover detection and control
• GaN device test in FET mode and diode mode
• Totem-pole CCM bridgeless PFC test
• Summary
AC/DC Efficiency Level Certifications

<table>
<thead>
<tr>
<th>80 Plus Test Type</th>
<th>115 V Internal Non-Redundant</th>
<th>230 V Internal Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of rated load</td>
<td>10% 20% 50% 100%</td>
<td>10% 20% 50% 100%</td>
</tr>
<tr>
<td>80 Plus</td>
<td>80% 80% 80%</td>
<td>80% 80% 80%</td>
</tr>
<tr>
<td>80 Plus Bronze</td>
<td>82% 85% 82%</td>
<td>81% 85% 81%</td>
</tr>
<tr>
<td>80 Plus Silver</td>
<td>85% 88% 85%</td>
<td>85% 89% 85%</td>
</tr>
<tr>
<td>80 Plus Gold</td>
<td>87% 90% 87%</td>
<td>88% 92% 88%</td>
</tr>
<tr>
<td>80 Plus Platinum</td>
<td>90% 92% 89%</td>
<td>90% 94% 91%</td>
</tr>
<tr>
<td>80 Plus Titanium</td>
<td>90% 92% 94%</td>
<td>90% 94% 96%</td>
</tr>
</tbody>
</table>

Energy Star Specification
PFC Efficiency Budget

<table>
<thead>
<tr>
<th>80 Plus Test Type</th>
<th>Efficiency at 115 V Internal Non-Redundant</th>
<th>Efficiency at 230 95.5%V Internal Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of rated load</td>
<td>10% 20% 50% 100%</td>
<td>10% 20% 50% 100%</td>
</tr>
<tr>
<td>80 Plus Platinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td>95.8% 95.4% 93.7%</td>
<td>95.7% 97.4% 95.8%</td>
</tr>
<tr>
<td>DC/DC</td>
<td>94% 96.5% 95%</td>
<td>94% 96.5% 95%</td>
</tr>
<tr>
<td>80 Plus Titanium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td>95.5% 95.8% 96.4% 93.8% 95.8% 98% 98.5% 94.8%</td>
<td></td>
</tr>
<tr>
<td>DC/DC</td>
<td>94% 96% 97.5% 96% 94% 96% 97.5% 96%</td>
<td></td>
</tr>
</tbody>
</table>

- PFC design becomes more challenging at Platinum level efficiency and much harder at Titanium level efficiency.

- Well designed single-phase PFC and interleaved PFC achieve around 97.5% efficiency and are just able to meet Platinum efficiency requirement.

- Bridgeless seems to be the only way to reach Titanium efficiency level.
Existing Bridgeless PFC Application Status

Basic Bridgeless PFC
- Good efficiency
- Easy control
- High component count
- Low component utilization
- Low density

Totem-Pole Bridgeless PFC
- Good efficiency
- Fixed frequency
- Easy control
- DCM only
- For power < 300 W

Texas Instruments – 2014/15 Power Supply Design Seminar
New PFC Development Trends

Transition-Mode Totem-Pole PFC
- ZVS operation
- Interleaved configuration for high power application (around max 300 W per phase)
- Variable frequency control
- Phase shedding and adding to optimize light load efficiency
- Suitable for MOSFET applications

Continuous-Conduction-Mode Totem-Pole PFC
- Low component count
- Fixed switching frequency, zero reverse recovery switch should be used
- GaN is a good candidate for the application
- Possible to operate TM and ZVS at light loads
GaN Versus Silicon and SiC

Key electrical properties of three semiconductor materials

<table>
<thead>
<tr>
<th>Properties</th>
<th>GaN</th>
<th>Si</th>
<th>SiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g (eV)</td>
<td>3.4</td>
<td>1.12</td>
<td>3.2</td>
</tr>
<tr>
<td>E_{BR} (MV/cm)</td>
<td>3.3</td>
<td>0.3</td>
<td>3.5</td>
</tr>
<tr>
<td>V_s ($x 10^7$cm/s)</td>
<td>2.5</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>μ (cm2/Vs)</td>
<td>990-2000</td>
<td>1500</td>
<td>650</td>
</tr>
</tbody>
</table>

E_g: Wide band-gap energy

E_{BR}: Critical field breakdown voltage

V_s: Saturation velocity

μ: Electron mobility

Theoretical on-resistance vs blocking voltage

$$r_{ON} \propto \frac{1}{\mu \times E_{BR}^3}$$

Reference:
EPC, Gallium Nitride (GaN) technology overview
Figure of Merit Comparison

Figure of Merit depicts fundamental characteristics of switching devices – $R_{ds_{on}}, Q_g, C_{OSS}$ and breakdown voltage

Texas Instruments – 2014/15 Power Supply Design Seminar
Cascode GaN FET Structure

Advantages:
• Depletion-mode GaN: low cost and better performance (compared to enhancement-mode GaN)
• Same MOSFET driver used
• Low forward voltage drop in diode mode

Disadvantages:
• Same reverse recovery of the cascode MOSFET body diode
• Potential MOSFET avalanche at high V_{ds} slew rate
• Large gate charge (same as the MOSFET)
Dmode-GaN + Safety FET Structure

Advantages:
- Zero reverse recovery
- Low gate charge
- No LV MOSFET switching loss
- Suitable for high switching frequency applications
- Integrated gate driver circuit to ease applications

Disadvantages:
- High forward voltage drop in diode mode
- Complicated gate driver circuit (IC design)
GaN-Based CCM Totem-Pole Bridgeless PFC Power Stage

Positive switching cycle
- Active switching stage

- Q1 and Q2 are low frequency switches.
- Q3 and Q4 are an active switch and a SyncFET.
GaN-Based CCM Totem-Pole Bridgeless PFC Power Stage

Positive switching cycle
 • Active switching stage

Positive switching cycle – active switching stage
GaN-Based CCM Totem-Pole Bridgeless PFC Power Stage

Positive switching cycle
- Freewheeling stage

Positive switching cycle – freewheel stage
GaN FET Forward Voltage Drop and Ideal Diode Emulation Control

Output characteristics of a typical depletion mode GaN FET

Ref: Transphorm datasheet

GaN FET operates at diode mode

GaN FET operates at ideal diode mode
Adaptive Dead-Time Control for SyncFET to Turn On

C_{sub_d}, C_{sd} and C_{rss} add to form C_{oss}

$$t_d = \frac{2C_{oss} \times V_O}{I_{L_peak}}$$

Current sampling point
Hardware-Assisted IDE Control

- Difficulty of volt-second control for ideal diode emulation

 DCM Load increasing CCM Load decreasing Stuck at CCM

 Negative current detection and SyncFET soft off control is needed

- Freewheel stage current sensing for zero current detection

Db is chopped off at ZCD point
UCD3138 – Based Control Circuit

ADC + CLA + DPWM

Crossover Detection

Main FET and SyncFET Selection

Current Loop

Voltage Loop

ADC

ADC

Kf

1/Vrms^2

KmABC

Vrms

Gv

Vref

Iref

Iac

IS

Vs

Vo

ZCD

Main FET

SyncFET

Programmable NCD Ref

EADC + CLA + DPWM

UDC3138 Digital Controller

Texas Instruments – 2014/15 Power Supply Design Seminar
Test Results – GaN FET Performance in FET Mode

Test Conditions:
- $V_{in} = 200$ VDC, $I_{in} = 2$ ADC, $V_O = 400$ V
- Q4: 600 V 150 mΩ depletion-mode GaN power transistor
- D3: Cree SiC diode C3D04060A
- Gate turn-off resistance = 2.2 Ω, turn-on resistance=15 Ω

Test Results:
- Turn-on time = 9 nS
- Max turn-on $dV/dt = 79$ V/nS
- C_{oss} is linearly charged up to V_O at turn-off
- About 18 V ringing when freewheel diode conducts
Test Results – GaN FET Forward Voltage Drop in Diode Mode

Test Conditions:
- Current = 0.1 A – 3 A, dead-time = 100 nS

Test Results:
- Forward voltage drop varies from 4.3 V to 7.3 V device-to-device when GaN is off
Test Results – GaN FET
Reverse Recovery in Diode Mode

Test Conditions:
• Q3 uses GaN FET, C3D04060E and STTH8R06D
• $\frac{dI}{dt}$ is about 368 A/µS

Test Results and Conclusions:
• Both GaN FET and SiC diode just have ringing current – no reverse current was observed
• STTH8R06D has a significant reverse current
• GaN FET has a larger ringing than SiC, but at lower frequency, as a result of larger output capacitance of the two GaN FETs
AC Current Crossover Control

- Rectifier FETs
- Active GaN FETs
- Integrator Running
- Integrator Stall
- Integrator Running
- Soft Turning On
- Turn-on Delay
Current Spike Root Causes and Solutions

Root Causes:
- Inaccurate a.c. voltage sensing
- Turning on rectifier FET too early cause a.c. line short circuit
- Current loop disturbed by current spike
- Rectifier FET hard switching
- Current loop compensation not optimized

Solutions:
- Differential a.c. voltage sensing with low phase offset
- Using different a.c. crossover voltage thresholds for high line and low line
- Sufficient blanking time
- Disable PWM and stall integrator during blanking time
- Rectifier FET soft switching on
- Inserting PWM turn-on delay time
- Optimize current loop compensation
AC Current Waveforms

115 Vac input at 450 W
PF = 0.999
THD = 3.3%

230 Vac input at 750W
PF = 0.995
THD = 4.0%
Totem-Pole Bridgeless PFC Efficiency

Partial ZVS at low line input and light loads
750 W Totem-Pole Bridgeless PFC Prototype
Summary

- GaN FET exhibits superior switching characteristics
- Safety GaN FETs has zero reverse recovery
- Suitable for high-frequency hard-switching applications
- Relative high “body diode” forward drop
- Sophisticated ideal-diode-emulation is the key to the success of Safety GaN FET applications
- Enables Totem-Pole PFC CCM operation
- AC crossover current spike root causes were analyzed and solutions provided
- High efficiency potential
- Possible TM ZVS control to optimize light loads efficiency
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible or liable for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible or liable for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

Buyer acknowledges and agrees that TI and its authorized distributors are not responsible or liable for the design or use of Buyer’s products. Buyer agrees and represents that it is responsible for providing its own adequate design and operating safeguards.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.